
Probability course

Louis Gass

December 23, 2023

Contents

1 Some enumeration 2

1.1 basic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Probability space 7

2.1 Some heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Some de�nitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Conditional probability and independence . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Some limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Random variable 16

3.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Distribution of a random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Averages and dispersion of a real random variable . . . . . . . . . . . . . . . . . . 23

3.3.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Common probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Discrete distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Pair of random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Independent random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Limit theorems in probability 35

4.1 Modes of convergence of random variables . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



1 Some enumeration

1.1 basic rules

Enumerating, is the art of counting the number of elements in a set. Its mastery often results
in pretty formulas, sometimes e�ortlessly. It does, however, require a little intuition, as it can
be easy to get the counting wrong.

We're going to look at a few "basic" rules for learning to count. We won't go into all of them,
because they're "obvious", but they already enable you to count quite a few sets.

Dé�nition 1.1. The cardinal of a set A is the number of elements contained in A.

At our level, we distinguish three possibilities for the cardinal of a set.

A set is either of cardinal

• countable, which we separate into two categories:

− �nite: there is a �nite number of elements in the set.

− in�nite countable : there is an in�nite number of elements that can be listed
in a sequence indexed by the natural integers; the �rst, the second, and so on.
This applies to natural integers, rational fractions, etc.

• uncountable: there is an in�nite number of elements, and they cannot be listed in a
sequence indexed by integers. This is the case for the set of real numbers, the power
set of N, etc.

We describe some basic rules about cardinals.

If A and B are two sets in bijection, then :

Card(A) = Card(B)

This principle reduces the enumeration of A to a simpler enumeration of B. For example,
consider a walker moving on a grid either up 1 square or to the right 1 square. He starts at
point (0, 0) and arrives at point (2, 2). How many possible paths are there? There are as many
as there are anagrams of the word RURU , i.e. 6.

Let A and B be two �nite sets. Let A×B be the set of pairs:

A×B = {(a, b) | a ∈ A, b ∈ B}

Then :
Card(A×B) = Card(A)× Card(B)

If I throw a dice and a coin, how many possible outcomes are there? Answer: 6× 2 = 12. In
probability, this is used to calculate the probabilities of two successive independent experiments.
There is one white ball and two black balls in an urn. I draw a ball at random and put it back,
then draw a second ball at random. What is the probability of drawing two black balls in a row?
Answer:

2× 2

3× 3
=

4

9
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Let A and B be two subsets of a �nite set Ω. If A and B are disjoint then :

Card(A ∪B) = Card(A) + Card(B)

In particular, if A and B form a partition of Ω 1, so Card(B) = Card(Ω) − Card(A). This
leads to the following formula for A and B which are not necessarily disjoint:

Card(A ∪B) = Card(A) + Card(B)− Card(A ∩B)

If I throw two dice at random, what is the probability that at least one of my dice is 6? There
are 36 possible equiprobable outcomes, denoted (n,m) where n (resp. m) is the outcome of the
�rst (resp. second) dice, with n,m being in {1, . . . , 6}. Then the probability of rolling a 6 is :

6 + 6− 1

36
=

11

36

Let Ω be a set and A a subset of Ω. Let 1A be the indicator function of the subset A,
i.e. the function

1A : Ω −→ {0, 1}

a −→
{

1 if a ∈ A
0 if a /∈ A

This function has an important theoretical purpose, so it's essential to know its de�nition. For
example, the function

1[a,b[ : R → R

is the function equal to 1 on the semi-open interval [a, b[ and 0 outside it. Another example,

Card(A) =
∑
e∈Ω

1A(e).

Let Ω be a set. Let P(Ω) be the power set of Ω, i.e. the set :

P(Ω) = {A | A is a subset of Ω}

Then :
Card(P(Ω)) = 2Card(Ω)

Let ω1, . . . , ωn be the elements of Ω. Then P(Ω) can be put in bijection with the product set of
n terms:

{0, 1} × {0, 1} × . . .× {0, 1} = {0, 1}Card(Ω)

Through the mapping

P(Ω) −→ {0, 1} × {0, 1} × . . .× {0, 1}

A −→ (1A(ω1),1A(ω2), . . . ,1A(ωn))

For example, if Ω = {1, 2, 3, 4} then the subset A = {2, 4} is associated with (0, 1, 0, 1). And,
of course, we have :

Card({0, 1} × {0, 1} × . . .× {0, 1}) = 2n = 2Card(Ω)

1The sets A and B form a partition of Ω if A and B are disjoint and A ∪ B = Ω. This de�nition generalizes

to a family of subsets (A1, . . . , An) of Ω. This family forms a partition of Ω if the sets A1, . . . , An are two-by-two

disjoint and their union is Ω. In other words, we have split Ω into n pieces A1, . . . , An.
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1.2 Permutation

Let Ω be a set of n elements. By default, the set Ω is not ordered and without repetition: we can
either write Ω = {a, b, c} or Ω = {b, c, a} or Ω = {a, b, c, a, b, b}. When we write "Let ω1, . . . , ωn

be the elements of Ω." this is in fact a way of ordering the set Ω: the �rst is ω1, the second is
ω2, and so on. Of course, there isn't just one way of ordering Ω.

Dé�nition 1.2. A permutation of the set Ω is a way of arranging the elements of Ω in
an ordered way. Equivalently, it is a bijection of Ω on the set {1, . . . , n} (when Ω is not the
empty set).

For example, there are six ways of arranging the set Ω = {a, b, c}. We choose the �rst element:
there are 3 possibilities among {a, b, c}. Then we choose the second: there are two possibilities
among the two remaining elements to be placed. Finally, the last element is automatically placed
last: so we have 3× 2× 1 = 6 possibilities.

a

b

c

c

b

b

a

c

c

b

c

a

b

b

a

Théorème 1.1. There are exactly n! permutations of the set Ω, where n! is the factorial of

the integer n de�ned by :

n! = 1× 2× . . .× n

By convention, 0! = 1 . There's only one way to order a set with 0 elements.

Proof. The reasoning is analogous to the previous case: there are n possibilities for choosing the
�rst element, then n− 1 for the second, and so on. In total, there are n× (n− 1)× . . .× 1 = n!
possibilities for ordering the set Ω.

How many anagrams of the word PROBA are there? All the letters are di�erent, so each
permutation gives a di�erent word. Therefore, 5! = 120 anagrams of the word PROBA.

Same question with the word ECOLE. This time, you have to be careful, because swapping
the two "E" will give you the same word. Let's note E1 and E2 the two "E". As before, there
are 120 permutations for the word E1COLE2. However, each word is counted twice, since for
an anagram of the word ECOLE (e.g. CEOEL) we can construct CE2OE1L and CE1OE2L.
There are therefore 120/2 = 60 possibilities.

Same question with the word MISSISSIPPI. There are 11 letters but many of them are
repeated: 1×M + 4× I + 4× S + 2× P . So we write MI1S1S2I2S3S4I3P1P2I4. This word has
11! distinct permutations. Let's try to �nd the number of permutations of MI1SSI2SSI3P1P2I4
(all S are now assumed to be identical). Given a permutation of this word, we can construct
exactly 4! for the word MI1S1S2I2S3S4I3P1P2I4. For example, from SSSSMI1I2I3I4P1P2 we
can construct :

� S1S2S3S4MI1I2I3I4P1P2

� S2S1S4S3MI1I2I3I4P1P2
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� . . .

In fact we can swap all the S between them, which will give me exactly 24 distinct permu-
tations of the word MI1S1S2I2S3S4I3P1P2I4. So there are exactly 11!

4! permutations of the
word MI1SSI2SSI3P1P2I4. We can reiterate with the remaining letters. In the end, the word
MISSISSIPPI will have :

11!

1!4!4!2!
= 34 650

anagrams.

1.3 Arrangement

Dé�nition 1.3. An arrangement of k elements taken from the n elements of a set Ω is an
ordered sequence of k distinct elements of Ω.

For example (a, c, f) and (c, f, a) and (b, a, f) are distinct arrangements of 3 elements among the
6 elements {a, b, c, d, e, f}. An arrangement of n elements from a n-element Ω set is simply a
permutation of Ω. For example, there are 2 possibilities for arranging 2 elements among 4: we
have 4 possibilities for choosing the �rst, then 3 for the second.

a

b c d

b

a c d

c

a b d

d

a b c

Théorème 1.2. There are exactly :

Ak
n = n(n− 1)(n− 2) . . . (n− k + 1) =

n!

(n− k)!

ways of arranging k elements among n elements.

Proof. The reasoning is analogous to the previous case: there are n possibilities for choosing the
�rst element, then n−1 for the second, and so on. In total, there are n×(n−1)× . . .×(n−k+1)
possibilities for arranging k elements among n.

For example, in a race with 20 participants, there are :

20× 19× 18 = 6840

distinct podiums possible.

1.4 Combination

Dé�nition 1.4. A combination of k elements from a n-element Ω set is a subset A of Ω
containing k elements.

The di�erence between a combination and an arrangement is that a combination is a set, and
therefore unordered. In an enumeration problem where order is important (combination of an
access code, podium, etc.), we use the notion of arrangement instead. In a problem where order
doesn't matter (number of white balls drawn in a toss, probability of having 2 girls knowing you
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have 5 children, etc.) it's the notion of combination that's important.

The number of combinations of k elements among a set of n elements (we call this number

"n choose k") is denoted by

(
n
k

)
.

Théorème 1.3. We have (
n
k

)
=

n!

k!(n− k)!

Proof. Given a combination of k elements, we can form exactly k! distinct arrangements by
permuting the k elements chosen. This gives the equality :

k!

(
n
k

)
= Ak

n =
n!

(n− k)!

If k > n we set (
n
k

)
= 0

In general, all enumeration formulas have two proofs: a computational proof, and a proof
using only enumeration tools. It's a good thing to master both: the computational proof is
generally (but not always) longer, while the enumeration proof is often prettier and more intuitive
(but beware of errors in reasoning!).

Théorème 1.4. Let x, y ∈ R and n ∈ N. Then :

(x+ y)n =

n∑
k=0

(
n
k

)
xkyn−k

Proof. We can prove this by recurrence on n, but let's proceed with a combinatorial proof instead.
We develop :

(x+ y)n = (x+ y)× (x+ y)× (x+ y)

=
n∑

k=0

akx
kyn−k

When we expand, we end up with monomials of the form xkyn−k for k varying between 0 and n.
To obtain such a monomial, we choose k factors among the n and expand according to "x", and
for the remaining (n− k) factors we expand according to "y". All that remains is the monomial
xkyn−k. The number of ways to choose k factors from n is exactly the binomial coe�cient k
from n, hence :

ak =

(
n
k

)

In particular,

2n =
n∑

k=0

(
n
k

)
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2 Probability space

2.1 Some heuristic

Probability theory aims to quantify the notion of uncertainty. The notion of uncertainty re�ects
a lack of information that prevents us from predicting the outcome of an experiment with abso-
lute certainty.

Let's take the example of a coin toss. Intuitively, we'll come up tails about half of the time.
But what's the reality? The coin toss, as a physical system, can be considered deterministic. If I
could describe with absolute precision the action exerted by my hand on the coin, I could deduce
its exact trajectory and predict on which face the coin would fall. Let's assume that the coin's
trajectory depends on a parameter θ ∈ [0, 1]. Since we have no information on the parameter θ,
we'll assume that it is chosen randomly according to some distribution (for example, a uniform
distribution). In this case, we'd observe that for about half the values of θ the coin will land on
heads, and for the other half it will land on tails.

Let's take the example of a poker player. Given his deck and the cards on the table, he
must decide whether or not to continue playing. Since he doesn't know his opponents' cards, he
assumes that the pack of cards used in the game has been chosen uniformly from all possible
packs (52!). From this, it is possible to calculate the proportion of card packs that are favorable
to him.

Probability theory enables us to quantify a lack of information about the parameters of a
given experiment. This lack of information translates into uncertainty about the outcome of
the experiment. To give ourselves a framework for making probabilities is to give ourselves
a model of the uncertainty we face.

When playing Uno, the rules of the game mean that the stack of cards at the end of a
game shows many cards of the same value in succession. When shu�ed by hand, some of these
sequences are not broken, and the shu�ed pack generally has a higher proportion of cards of
the same value in sequence than if the shu�e had been "perfect". With no prior knowledge
of the deck other than that it has just been shu�ed following a previous game, an experienced
player will model the card deck as one chosen at random from among the 52! possible decks, but
this random choice will not be uniform across all decks. Those with cards of the same color in
sequence will be considered to have a higher probability of occurrence.

In order to de�ne a framework for doing probability we need three ingredients.

We need to give ourselves the universe of possible con�gurations for the experiment or game
under consideration.

For a dice roll, it could be the trajectory of my hand. For a card game, it's the set of all
possible decks. Generally speaking, it's a big, complicated space that's di�cult, if not impossible,
to describe precisely.

We need to de�ne the notion of information. It's the set of events we want to consider in
an experiment.

For example, we take a survey of a population. Each person is asked to specify his or her age
category: between 0 and 20 years old, between 20 and 50 years old, over 50 years old. Here, the
universe is all the people surveyed. Our survey allows us to quantify the probability of occurrence
of events such as "The person is under 50". On the other hand, we have no access to quantities
such as "The person is between 40 and 60", let alone "The person is a man". This notion of
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information seems a little super�uous, as it always seems possible to "enlarge" the experiment
in order to access information we don't have. There are at least three reasons for not doing so:

� This distorts/complicates the model. In the case of a dice roll, we don't really care whether
the dice has made three turns on itself before hitting the ground. The essential information
is only the �nal value of the dice.

� When we model a game, or more generally a quantity that evolves over time (the stock
market price, a quantum particle, Markov chain, etc.), this notion of information takes on
its full importance in understanding the game (are the rules in my favor?) and devising
a strategy (should I draw a card, sell my shares?). The general framework is that of the
theory of stochastic processes.

� There are certain mathematical obstructions that prevent us from considering the prob-
ability of realization of certain sets in the case where the universe Ω is uncountable, as
shown by the famous Banach-Tarski paradox.

We need to de�ne a notion of measure of probability. It quanti�es the probability of a given
event to occur.

In the case of a well-mixed pack of cards, for example, we can choose a uniform probability
over all the decks of cards, meaning that each card shu�e has a probability 1/(52!), but if
it's badly mixed, the probability may be chosen di�erently. Modeling an experiment therefore
requires choosing the probability with which each event occurs. This measure is supposed to
re�ect the physical reality of the experiment as closely as possible, which can prove complicated.
A statistical test can be used to check the agreement between a theoretical probabilistic model
and a real experiment repeated a large number of times.

2.2 Some de�nitions and examples

According to the previous discussion, a probability space consists of three ingredients.

Dé�nition 2.1. A probability space is a triplet (Ω,F ,P), where :

• Ω is a set

• F is a σ-algebra on Ω.

• P is a probability measure

Let's take a closer look at the three points of the de�nition.

• Ω is the universe, i.e. the set of possible con�gurations of my experiment. Mathematically,
it's simply a set.

• F represents the information we can acquire during the experiment. An element of F is
called a event. An event is a subset of the Ω universe. The set F is therefore a set of events.
Morally, it is possible to apply certain operations between events: union, intersection, di�erence,
complementary, etc. In other words, the set F is stable by a number of operations.
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Dé�nition 2.2. A σ-algebra F on a space Ω is a subset of P(Ω) (the power set of Ω) such
that :

� Ω ∈ F (the universe is an event)

� If A ∈ F then A ∈ F (stability by passing to the complementary)

• If (An)n≥0 ∈ F then
⋃

n≥0An ∈ F (stability by countable union)

The pair (Ω,F) is a measurable space.

• P is used to quantify the probability of a given event occurring. For a given event A, it
associates a number between 0 and 1, denoted P(A), which re�ects the probability of the event
A occurring. To be consistent with an intuitive notion of a measure, P must verify a number of
properties:

Dé�nition 2.3. A probability measure P on a measurable space (Ω,F) is an application
:

P : F −→ [0, 1]

A −→ P(A)

Such as:

� P(Ω) = 1 (the universe is an event with probability 1)

� If (An)n≥0 is a countable family of pairwise disjoint events, then :

P

(
+∞⋃
n=0

An

)
=

+∞∑
n=0

P(An)

If A is an event in a probability space (Ω,F ,P) such that P(A) = 1, we say that A is real-
ized almost-surely (we sometimes write a.s.). Conversely, if A is an event in a probability space
(Ω,F ,P) such that P(A) = 0, we'll say that A is a negligible event. This terminology is important
and will be used many times throughout the course.

Let's look at some basic examples of σ-algebras.

Dé�nition 2.4. The σ-algebra {Ø,Ω} is called the trivial σ-algebra. It is the smallest
σ-algebra on Ω that we can consider. The σ-algebra P(Ω) is called the discrete σ-algebra.
It is the largest σ-algebra on Ω that can be considered.

When Ω is countable, we generally consider the discrete σ-algebra on Ω.

Dé�nition 2.5. Let C be a subset of P(Ω). Let σ(C) be the smallest σ-algebra containing
C. It is the intersection of all σ-algebras containing C.

For example, if Ω is countable and C is the set of singletons, it's easy to see that σ(C) = P(Ω).

Let Ω = [0, 1]. If I is an interval with ends a and b (not necessarily open or closed), then
µ(I) = b− a. This de�nition is "consistent" with the notion of a probability space:

µ(Ω) = 1
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I1 and I2 are disjoint intervals such that I1∪ I2 is an interval (e.g. I1 = [a, b] and I2 =]b, c]) then
:

µ(I1 ∪ I2) = µ(I1) + µ(I2)

Dé�nition 2.6. Let B([0, 1]) be the σ-algebra generated by the intervals included in [0, 1].
It is called the Borelian σ-algebra on [0, 1]. Similarly, B(R) is the σ-algebra generated by
the intervals in R.

Théorème 2.1. (Carathéodory extension) there exists a unique probability measure (still

denoted µ) on (Ω,B([0, 1])) such that :

• ([0, 1],B([0, 1]), µ) is a probability space.

• µ(I) = b− a for any interval I of extremity a and b.

Proof. Accepted.

In other words, if we decide that the measure of an interval is exactly its length, then we can
extend this measure to the entire σ-algebra generated by intervals: countable unions of intervals,
singletons, . . . and much more!

On the other hand, there are subsets of Ω that are not in B([0, 1]) (a counterexample is
complicated to exhibit). In fact, it can be shown that it is impossible to consistently extend this
measure to the entire σ-algebra P([0, 1]) (Vitali's counterexample). For this reason, we must
restrict ourselves to the Borelian σ-algebra.

2.3 Conditional probability and independence

When we want to model two distinct quantities by a probabilistic model, it often happens that
these two quantities are correlated. For example, an ice cream vendor's daily sells are strongly
correlated with temperature. Quantifying this dependence enables the ice cream vendor to better
adjust his stocks so as not to run out on hot days and lose out on cooler days. Consider the
following events:

� A : the vendor sells over 100 ice creams during the day

� B: the day's temperature has exceeded 20 degrees.

The salesman models his situation as follows. From a year's analysis of sells he estimates that

� P(A) =0.5

� P(B) =0.4

� P(A ∩B) = 0.3

In the evening, the next day's weather forecast calls for temperatures of over 20. How can we
quantify the probability that the seller will sell more than 100 of ice cream the next day? Let's
denote P(A|B) this probability. Then we have :

P(A|B) =
P(A ∩B)

P(B)
= 0.75.
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The universe of possibilities for the following day is no longer the whole space Ω, but B, the set
of con�gurations for which the temperature exceeds 30 degrees over the course of the day. So,
in a way, we've changed the probabilistic space:

(Ω,F ,P) −→ (B,FB,P( . |B))

Where :
FB = {A ∩B | A ∈ F}

In this example, the notion of dependence is explained by a notion of causality :

The weather's �ne ⇒ People are buying ice cream

But that's not always the case. For example, we're doing a survey of people living near
electricity pylons2. We note:

• A: "the person falls ill more than 5 times during the year".

• B: "the person lives within 200m of an electric pylon".

Over a whole city, we notice that :

� P(A) = 0.2

� P(B) = 0.1

� P(A ∩B) =0.04

Then :

P(A|B) =
P(A ∩B)

P(B)
= 0.4.

In other words, a person is twice as likely to fall ill frequently if they live near an electricity
pylon. Does this mean that electricity pylons are dangerous for your health?

Not necessarily, because in reality the population living near electricity pylons is poorer on
average, and poorer people have less access to health care. Here, events A and B are correlated,
but not necessarily causally. In fact, these two events are correlated with a third event C: "the
person is below the poverty line". Instead, we have the following plausible cause-and-e�ect rela-
tionships between A and B.

The person is poor

The person has health problem The person lives near a pylon

A more blatant example: 100% of people who drink water die... Don't drink water!

Dé�nition 2.7. Let (Ω,F ,P) be a probability space, and B an event of non-zero measure.
Then for any event A, we call the quantity :

P(A|B) =
P(A ∩B)

P(B)

It indicates the probability of an event A occurring knowing that event B has occurred.

2Adapted from a real survey.
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Dé�nition 2.8. A family {B1, . . . , Bn} is said to be a complete system of events if :

• ∀i ∈ {1, . . . , n}, P(Bi) ̸= 0

• ∀i, j ∈ {1, . . . , n}, P(Bi ∩Bj) = 0

• P (
⋃n

i=1Bi) = 1 or equivalently
∑n

i=1 P(Bi) = 1

In other words, the family {B1, . . . , Bn} forms a probabilistic partition of the universe Ω. It
is possible to adapt the de�nition for a countable family of events.

For example, if 0 < P(A) < 1 then the family {A,A} forms a complete system of events.
Similarly, provided the following events have non-zero probabilities, the following family :

{A ∩B,A ∩B,A ∩B,A ∩B}

is a complete system of events.

Théorème 2.1 (Law of total probability). Let {B1, . . . , Bn} be a complete system of events,

and A be any event. Then :

P(A) =
n∑

i=1

P(Bi)P(A|Bi)

Théorème 2.2 (Bayes' formula). Let A and B be two events of non-zero probability. Then

we have the identity :

P(A|B) =
P(A)P(B|A)

P(B)

If the family {A1, . . . , An} is a complete system of events, then for 1 ≤ i ≤ n we have :

P(Ai|B) =
P(Ai)P(B|Ai)∑n
i=1 P(Ai)P(B|Ai)

Bayes' formula makes it possible, by knowing the e�ects, to trace back to a probability on the
causes. It is the basis of Bayesian inference.

The notion of conditional probability leads naturally to the notion of independence. Let B
be an event with non-zero probability and A any event. Event A is independent of event B if
the probability of its occurrence does not depend on whether or not B has occurred. In other
words:

P(A|B) = P(A)

If two dice are rolled, knowledge of the value of the �rst dice has no in�uence on the value of
the second dice. The events "the �rst dice is a 6" and "the second is even" are independent.

Dé�nition 2.9. Two events A and B are said to be independent if :

P(A ∩B) = P(A)P(B)

We then note A ⊥ B. More generally, two σ-algebras F and G are independent if

∀A ∈ F , ∀B ∈ G, P(A ∩B) = P(A)P(B),

and we note
F ⊥ G.
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We can also speak of independence for a family of events.

Dé�nition 2.10. Events A1, . . . , An are said to bemutually independent if for any subset
I of {1, . . . , n} we have

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

Similarly, the σ-algebras F1, . . . ,Fn are mutually independent if for any events A1, . . . , An

such that :
A1 ∈ F1 , . . . , An ∈ Fn

The events A1, . . . , An are independent.

It's easy to see that eventsA1, . . . , An are independent if and only if the σ-algebras σ(A1), . . . , σ(An)
are independent. Indeed, for an event A we have :

σ({A}) = {Ø, A,A,Ω}

For example, if A and B are independent events, then

P(A ∩B) = P(B)− P(A ∩B)

= P(B)− P(A)P(B)

= P(A)P(B)

Théorème 2.3. Let F1, . . . ,Fn, G1, . . . ,Gm be mutually independent σ-algebras. Then :

σ

(
n⋃

i=1

Fi

)
⊥ σ

 m⋃
j=1

Gj


Proof. Admitted.

For example, let A1, A2, A3, A4, A5 be mutually independent events. Then :

(A1 ∪A3) ⊥ (A2 ∩ (A4 ∪A5))

Generally speaking, if we separate a family of mutually independent events into two groups, then
an event constructed from the �rst group and the operations ∩,∪ and will be independent
of an event constructed from the second group and the same operations. Mutual independence
must be understood in terms of the independence of information. The information provided by
knowledge of A1 and A3 is independent of the information generated by knowledge of A2, A4 and
A5.

We can also de�ne the independence of a countable family of events.

Dé�nition 2.11. A family (An)n∈N of events is said to be mutually independent if for any
�nite subset I of N we have

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

Similarly, the σ-algebras (Fn)n∈N are mutually independent if for any family of events
(An)n∈N such that :

∀n ∈ N, An ∈ Fn

the events (An)n∈N are mutually independent.

13



2.4 Some limit theorems

The aim of this section is to look at some "limit" probabilities. We recall the de�nition of the
limit superior and limit inferior of a sequence of sets.

Dé�nition 2.1. Let (An)n≥0 be a sequence of sets. The limit superior of the sequence is
de�ned as

lim sup
n≥0

An =
⋂
n≥0

⋃
k≥n

Ak,

and the limit inferior of the sequence as

lim inf
n≥0

An =
⋃
n≥0

⋂
k≥n

Ak.

The interpretations of these two quantities are as follows:

• An element ω ∈ Ω belongs to the set lim supn≥0An if and only if ω belongs to an
in�nite number of events in the sequence (An)n≥0.

• An element ω ∈ Ω belongs to the set lim infn≥0An if and only if ω belongs to all events
of the sequence (An)n≥0 up from a certain rank.

We start with the following fundamental theorem.

Théorème 2.2 (Borel�Cantelli). Let (An)n≥0 be a sequence of events in a probability space

(Ω,F ,P). If ∑
n≥0

P(An) < +∞,

then

P(lim sup
n≥0

An) = 0.

If the events (An)n≥0 are mutually independent and∑
n≥0

P(An) = +∞,

then

P(lim sup
n≥0

An) = 1.

Proof. The proof is not di�cult, but we'll admit it.

In other words, if the series of term (P(An))n≥0 converges, then the events in the sequence
(An)n≥0 will almost surely only occur a �nite number of times. Conversely, if we add the as-
sumption of independence of the sequence (An)n≥0 and the series of term (P(An))n≥0 diverges,
then the events of the sequence (An)n≥0 occur in�nitely often almost surely. This theorem is of
fundamental importance for proving almost-sure convergences of random variables, such as the
strong law of large numbers.

In the following, (Ω,F ,P) is a probability space and (Fn)n≥0 a sequence of mutually inde-
pendent σ-algebras included in F .

14



Dé�nition 2.2 (Asymptotic σ-algebra). We de�ne the asymptotic σ-algebra

F∞ =
⋂
n≥0

σ

⋃
k≥n

Fk

 .

The asymptotic σ-algebra groups events that depend only on the "tail" of the σ-algebra
sequence (Fn)n≥0, i.e. that do not depend on the �rst elements of the σ-algebra sequence. An
event in F∞ is called a asymptotic event.

Théorème 2.3 (Kolmogorov's 0 − 1 law). Let A be an event of the asymototic σ-algebra
F∞. Then

P(A) ∈ {0, 1}.

Proof. The proof is not di�cult, but we'll admit it for the purposes of this course. It relies on
the fact that the σ-algebra F∞ is independent of itself.

In other words, an event in the asymptotic σ-algebra either almost surely occurs, or almost
surely never occurs. There is no in-between possibility. On the other hand, it can be di�cult
to know in which case we are. Typical examples of asymptotic events are: "Is a sequence of
independent random variables bounded? does it converge?" We'll be looking at some applications
of these two theorems during this course.
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3 Random variable

3.1 De�nitions

A random variable X is an application to which a con�guration, a given outcome (thus an
element of Ω) associates an object, a number, a color, etc.

A random variable models the di�erent values that the outcome of a random experiment
can take.

For example, consider the random variables associated with the following experiments.

• The roll of the dice. Consider the random variable X : Ω → {1, 2, 3, 4, 5, 6} the application
to which a given con�guration associates the value of the dice.

• The coin toss. Consider the random variable X : Ω → {"Head", "Tail"} the application to
which a given con�guration associates the value of the coin.

• The dart game. Consider the random variable X : Ω → R+ the application to which a
given con�guration associates the distance of the dart from the center of the target.

• The throw of two dice. Consider the random variable X : Ω → {2, . . . , 12} the application
to which a given con�guration associates the sum of the two dice.

To obtain information on the probability of a random variable belonging to a certain set of values,
it must satisfy certain constraints. For example, in the case of heads or tails, we need to ensure
that the subset

{X = "Head"} = {ω ∈ Ω | X(ω) = "Head"}

is an event, i.e. an element of the σ-algebra F . Indeed, the proposition "the probability that the
coin lands on tails is 1/2" is written mathematically :

P(X = "Tails") = 1/2.

In the case where X has a value in a countable space E, there are no di�culties. We require
that for any x in E the set

{X = x} = {ω ∈ Ω | X(ω) = x}

is an event (i.e. belongs to the σ-algebra F). Since any subset U of E can be written as a
countable union of singletons, then :

{X ∈ U} =
⋃
x∈U

{X = x}

And thus
∀U ⊂ E, {X ∈ U} ⊂ F

If X is real-valued (or in an uncountable space), things get a little more complicated. If we
ask only that the sets {X = x} are events, we can't assert that the set :

{X ∈ [0, 1]} =
⋃

x∈[0,1]

{X = x}

is an event, since a σ-algebra is only stable by countable union, and the set [0, 1] is uncountable.
Conversely, we cannot3 require that for any subset U of R, the set :

{X ∈ U} = {ω ∈ Ω | X(ω) ∈ U} .
3We couldn't de�ne a proper notion of uniform random variable this way.
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is an event. We need to restrict the collection of subsets we're allowed to look at. The minimum
we can require is to be able to make sense of propositions like "the probability that my dart
arrives within 20cm of the target is 1/2". To achieve this, the set :

{X ≤ 20} = {ω ∈ Ω | X(ω) ≤ 20}

is an event. In general, we require that for any x ∈ R, the set :

{X ≤ x} = {X ∈]−∞, x]}

is an event. From this it is easy to show 4 that the following subsets of Ω are events:

{X < x} =
⋃
n≥0

{
X ≤ x− 1

n

}

{X > x} = {X ≤ x}

{X ≥ x} = {X < x}

{x ≤ X ≤ y} = {X ∈ [x, y]} = {X ≥ x} ∩ {X ≤ y}

{X = x} = {x ≤ X ≤ x}

In particular, the set :
{X ∈ U}

is an event when U is an interval, but also a countable union of intervals, singletons, . . . and much
more! In fact, the set of U for which this set is an event contains the entire σ-algebra generated
by the intervals, which we call the Borelian σ-algebra on R, denoted B(R) (we've already seen
this concept in the previous chapter).

Let's try to generalize. Let X be a random variable with a value in some space E. We need
to decide which are the subsets U of E for which the set {X ∈ U} is an event (i.e. an element
of the σ-algebra F). This is equivalent to choosing a collection of subsets of E, which we will
denote G, and such that :

∀U ∈ G, {X ∈ U} ∈ F .

If U ∈ G and (Un)n∈N is a family of elements of the collection G then

{X ∈ E} = Ω ∈ F ,

{X ∈ U} = {X ∈ U} ∈ F ,{
X ∈

+∞⋃
n=0

Un

}
=

+∞⋃
n=0

{X ∈ Un} ∈ F ,

So it's natural to require that G be a σ-algebra on E.

Dé�nition 3.1. Let X be an application from a probability space (Ω,F ,P) to a measured
space (E,G). We say that X is a random variable taking values in (E,G) if :

∀U ∈ G, {ω ∈ Ω | X(ω) ∈ U} ∈ F

The following theorem details the case where σ-algebra G is generated by a set C of subsets of
E, stable by intersections.

4The set of events forms a σ-algebra. So the intersection, union and complement of events are still events.
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Théorème 3.1 (Dynkin system). Let X : (Ω,F ,P) −→ (E,G) be an application. Suppose

that the σ-algebra G is generated by a set C of subsets of E, stable by intersections. This

means :

G = σ(C)

∀U, V ∈ C, U ∩ V ∈ C

Then X is a random variable if and only if :

∀U ∈ C, {ω ∈ Ω | X(ω) ∈ U} ∈ F

Proof. Admitted.

In other words, it's enough to check that {X ∈ U} is an event for all U ∈ C to deduce that it's
an event for all A ∈ G. This allows us to clarify the de�nition of a random variable in the two
cases we're interested in: real random variables and discrete random variables.

Dé�nition 3.1 (Discrete case). Let X be an application of a probability space (Ω,F ,P)
with values in a countable space E, provided with the discrete σ-algebra. This means

X : (Ω,F ,P) −→ (E,P(E)).

We say that X is a discrete random variable with values in E, if for any e ∈ E, the set
{X = e} is an event of the σ-algebra F .

Dé�nition 3.2 (Real case). Let X be an application of a probability space (Ω,F ,P) with
values in R, provided with the Borelian σ-algebra B(R), i.e.

X : (Ω,F ,P) −→ (R,B(R)).

We say that X is a real random variable if for any x ∈ R, the set {X ≤ x} is an event of
the σ-algebra F .

In practice, we rarely have to show that an application is a random variable, because the
probability space (Ω,F ,P) is precisely constructed so that the quantities we're interested in (the
number on the dice, the distance to the target, etc.) are random variables. In practical terms, a
problem might begin with :

"Let X be a random variable that models the result of a throw of a dice..."

The aim is to get as far away as possible from this probability space, about which little is
known. On the other hand, you may be asked to show that other applications dependent on X
are indeed random variables.

3.2 Distribution of a random variable

When given a random variable X, it is important to know its distribution, i.e. the probability
that X belongs to a certain set of values.

Dé�nition 3.2. The distribution of a random variable X : (Ω,F ,P) → (E,G) is the given
for any U : (Ω,F ,P) → (E,G). is the given for all U ∈ G of the quantities :

P(X ∈ U) = P({ω ∈ Ω | X(ω) ∈ U})

18



Théorème 3.2 (Dynkin system). If the σ-algebra G is generated by a set C subsets of E,

stable by intersection, then the distribution of a random variable X is entirely characterized

by giving for any U ∈ C the quantities :

P(X ∈ U)

Proof. Admitted.

There are two fundamental examples to remember.

Dé�nition 3.3 (Discrete case). Let X be a discrete random variable, with values in a
countable space E. In this case, the distribution of X is entirely characterized by the
quantities :

P(X = e)

For e ∈ E.

For example, if the random variable X models the number of people in a queue, then the
distribution of X is characterized by giving for k ∈ N the quantities:

P(X = k)

Dé�nition 3.4. Let X be a real random variable. The distribution of X is entirely charac-
terized by the quantities :

P(X ≤ x)

For x ∈ R.

For example, if the random variable X models the distance of a dart from the center of the
dartboard, then its distribution is characterized by giving for x ∈ R+ the quantities:

P(X ≤ x)

Dé�nition 3.5. Let X be a real random variable. The function F de�ned by :

FX : R −→ [0, 1]

x −→ P(X ≤ x)

is called the cumulative distribution function of the variable X.

By the previous theorem, the cumulative distribution function characterizes the distribution
of X. This function is central to the study of real random variables.

Let X be a random variable that models the uniform drawing of a real number between 0
and 1. Its cumulative distribution function is as follows
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0
x

P(X ≤ x)

1

1

Let X be a random variable that models a balanced throw of the dice. It is a real random
variable since {1, 2, 3, 4, 5, 6} ⊂ R. Its cumulative distribution function is as follows:

0
x

P(X ≤ x)

1 2 3 4 5 6 7

1/6

2/6

3/6

4/6

5/6

1

In general, when X is a discrete random variable, its cumulative distribution function is
piecewise constant, and the points of discontinuity are exactly the values reached by X with
non-zero probability.

Théorème 3.1. The cumulative distribution function FX of a random variable veri�es the

following properties:

• FX is increasing and :

lim
x→−∞

FX(x) = 0

lim
x→+∞

FX(x) = 1

• FX is continuous on the right: if (xn)n≥0 is a sequence decreasing that converges to a

real x then :

lim
n→+∞

P(X ≤ xn) = P(X ≤ x)

• FX admits a left limit at any point: if (yn)n≥0 is a increasing sequence that converges

to a real y then :

lim
n→+∞

P(X ≤ yn) = P(X < y)
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An function F verifying the last two points is said to be càdlàg (continuous on the right, limit
on the left).

Proof. For the �rst point, let x and y be real numbers such that x < y. Then :

{X ≤ x} ⊂ {X ≤ y}

Then :
FX(x) = P(X ≤ x) ≤ P(X ≤ y) = FX(y)

Furthermore, let (xn)n∈N be a sequence increasing towards in�nity. The events ({X ≤ xn})n∈N
form an increasing sequence of events whose union is R any integer. Hence :

lim
n→+∞

FX(xn) = lim
n→+∞

P(X ≤ xn)

= P

( ∞⋃
n=0

{X ≤ xn}

)
= P(X ∈ R)
= 1

The case in −∞ is similar. Let (xn)n∈N be a decreasing sequence towards a real x. Then :

lim
n→+∞

FX(xn) = lim
n→+∞

P(X ≤ xn)

= P

( ∞⋂
n=0

{X ≤ xn}

)
= P(X ≤ x)

= FX(x)

Let (yn)n∈N be a sequence increasing towards a real y.

lim
n→+∞

FX(yn) = lim
n→+∞

P(X ≤ yn)

= P

( ∞⋃
n=0

{X ≤ yn}

)
= P(X < y)

Conversely, let F be a function verifying the three points of Theorem 3.1. We de�ne the
quantile function F−1 : [0, 1] → R by

F−1(u) = inf {x ∈ R | F (x) ≥ u} .

Théorème 3.2. Let U be a uniform distribution on [0, 1]. The quantile function F−1 veri�es

the following properties.

• If F is continuous and increasing, then F−1 is the reciprocal bijection of F .

• The random variable X = F−1(U) has the cumulative distribution function F .

21



Proof. Accepted.

In the discrete case, we need only give ourselves a sequence of positive numbers (αn)n∈N such
that : ∑

n≥0

αn = 1

For (xn)n≥0 a sequence of real numbers, there exists a random variable X such that :

∀n ≥ 0, P(X = xn) = αn.

Dé�nition 3.6. Let x ∈ R. A real random variable X is said to have an atome at the
point x if :

P(X = x) > 0

Théorème 3.3. Let X be a real random variable. The cumulative distribution function of

X exhibits a jump of discontinuity at the point x if and only if X has an atom at the point

x. In this case, the jump is of size P(X = x).

The theorem can be veri�ed on the previous examples.

Proof. The cumulative distribution function of X is continuous at a point x if and only if the
limits of F to the left and right of the point x coincide, which is written :

P(X < x) = P(X ≤ x)

Now we have equality:
P(X = x) = P(X ≤ x)− P(X < x)

The right-hand member cancels out if and only if X is atom-free. Otherwise, the jump size is
given by the di�erence between the two limits, which is exactly P(X = x).

Dé�nition 3.7 (Random variable with density). Let X be a real random variable with
cumulative distribution function FX . The random variable X is said to have a density if
there exists an integrable function fX such that

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt

The function fX is called the probability density of the distribution of X.

The function FX is a primitive of the function fX . We deduce that FX is continuous, so X
is atom-free. We also deduce the following theorem:

Théorème 3.4. Let X be a real random variable. If its cumulative distribution function FX

is continuous and piecewise derivable, then X is a random variable with probability density

f and :

fX = (FX)′

Proof. This is the link between primitive and derivative.

22



Conversely, if X is a random variable that has a density, its characteristic function is contin-
uous, so X has no atom. On the other hand, there are atom-free random variables that do not
admit a density (Cantor's staircase is a counterexample).

Let a and b be real numbers with a < b, and X be a random variable with density fX . Then
:

P(a ≤ X ≤ b) =

∫ b

a
fX(t)dt

For example, let X be a uniform random variable on the set [0, 1]. For 0 ≤ a ≤ b ≤ 1 we
have :

P(a ≤ X ≤ b) = b− a =

∫ b

a
1dt

In other words, the density of the uniform distribution is the function 1[0,1].

If now I = [x, x+ ε] is a small interval, then we have :

P(x ≤ X ≤ X + ε) =

∫ x+ε

x
fX(t)dt ≃ εfX(x).

Let X be a random variable with density fX . The probability that X belongs to a small
interval around a point x ∈ R is proportional to the size of this interval. The proportionality
coe�cient is exactly fX(x).

Théorème 3.5. Let X be a random variable with density fX . Then :

• fX is positive

• fX has mass 1 : ∫ +∞

−∞
fX(t)dt = 1

Conversely, if f is a function verifying these two properties, then there exists a random variable
X of density f .

Proof. For the �rst point, we have for ε a small positive real :

0 ≤ P(x ≤ X ≤ X + ε) ≃ εf(x)

And so f is necessarily positive. For the second point, we have :

1 = P(−∞ < X < +∞) =

∫ +∞

−∞
f(t)dt

3.3 Averages and dispersion of a real random variable

In this section, we consider only real random variables. We will de�ne the notions of mean and
dispersion of a real random variable. These tools give us a better understanding of the random
variable we're dealing with.
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3.3.1 Expectation

How can we make sense of the notion of mean of a random variable? An average is intuitively a
real value that is supposed to re�ect the entire random variable. It is therefore a way to reduce
all the information generated by the random variable to a single number.

Let's start by considering a positive real random variable X de�ned on a probability space
(Ω,F ,P), where Ω is a �nite or countable set, and F is the discrete σ-algebra. For example
Ω = {a, b, c}, with :

P({a}) = P({b}) = P({c}) = 1

3

A natural way to de�ne its mean E[X] is via the formula :

E[X] =
X(a) +X(b) +X(c)

3

In general, let Ω = {ω1, ω2, . . .}, given the discrete σ-algebra and any probability measure P. If
the sum :

E[X] =
+∞∑
n=1

X(ωn)P({ωn})

converges, we say that X has �nite expectation and we denote E[X] its mean.

Now suppose we're considering a real random variable de�ned on the probability space
([0, 1],B([0, 1]), µ). A random variable X is then an application of [0, 1] in R (which veri�es
the condition of the theorem 3.1). If X is an integrable function, then its mean is de�ned by :

E[X] =

∫ 1

0
X(ω)dω.

In these two examples, we have a tool for averaging:

• The sum in the case where Ω is �nite or countable

• The integral where Ω = [0, 1].

We're going to de�ne the notion of integral (or expectation) on any probability space (Ω,F ,P).
Let's start by de�ning the integral of "easy" functions. Let A be an event. It is natural to pose :

E
[
1A

]
= P(A)

We ask that the expectation be linear. If A1, . . . , An are events and λ1, . . . , λn are real numbers,
then :

E
[
λ11A1 + . . .+ λn1An

]
= λ1P(A1) + . . .+ λnP(An)

It's easy to see that this de�nition is consistent. Suppose there are events B1, . . . , Bm and real
α1, . . . αm such that :

λ11A1 + . . .+ λn1An = α11B1 + . . .+ αm1Bm

In this case:
λ1P(A1) + . . .+ λnP(An) = α1P(B1) + . . .+ αmP(Bm)

For example:
1[0,1/2] + 21[1/2,1] = 1[0,1] +1[1/2,1]

And :
1

2
+ 2 ∗ 1

2
= 1 +

1

2
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A random variable X written in the form :

X = λ11A1 + . . .+ λn1An

is called simple. These are the building blocks for the de�nition of our integral (just as staircase
functions are the building blocks for the Riemann integral).

Dé�nition 3.3. Let X be a positive real random variable on a probability space. If X is
a simple random variable with :

X = λ11A1 + . . .+ λn1An

We pose :
E[X] = λ1P(A1) + . . .+ λnP(An)

In the general case, we pose :

E[X] = sup {E[Y ] | Y simple and Y ≤ X}

We say that X is integrable (or of �nite expectation) if :

E[X] < +∞

Dé�nition 3.4. Let X be a real random variable quelconque (not necessarily positive).
We decompose X into :

X = X1X≥0 +X1X<0

If the (positive) random variables X1X≥0 and (−X1X<0) have �nite expectations, we say
that X has a �nite expectation and de�ne its mean by :

E[X] = E[X1X≥0]− E[X1X<0]

In measure theory, this integral is called the Lebesgue integral. In the discrete case, it coin-
cides with the sum as seen in the introduction. In the real case, it coincides with the Riemann
integral for piecewise continuous functions, but allows even more functions to be integrated. We
can, for example, integrate highly irregular functions like 1Q. Dominated convergence theorems
are also more powerful and simpler to state.

The expectation of a positive random variable may be in�nite. For example, in the case
where (Ω,F ,P) = ([0, 1],B([0, 1]), µ) the function :

X : ω 7→ 1

ω

has an in�nite integral.
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Figure 1: Left: approximation of the Riemann integral by staircase functions. Right: Lebesgue integral

approximated by simple functions.

Théorème 3.6. Let X and Y be two integrable random variables de�ned on the same prob-

ability space (Ω,F ,P), and λ a real number. Then,

� Linearity: For λ ∈ R, we have

E[λX + Y ] = λE[X] + E[Y ]

� Monotonicity: If, for almost all ω ∈ Ω, we have X(ω) ≤ Y (ω), then

E[X] ≤ E[Y ]

� If X follows a Bernoulli distribution with parameter p, then

E[X] = p.

Proof. We have seen that the expectation is linear for simple random variables. We will assume
that this property remains true when passing to the limit. The monotonicity of expectation can
be proved in a similar way.

Unfortunately, this de�nition of the average is not practical at all. It seems to depend heavily
on the probability space Ω. Fortunately, we have the following fundamental theorem that allows
us to overcome the problem.

Théorème 3.7 (Transfer Theorem). Let X be a random variable de�ned on a probability

space (Ω,F ,P), and g be a function from R to R. Then, the quantity E[g(X)] depends only

on the function g and the distribution of X.

Proof. We use an approximation argument. If U is a measurable subset of R, and g = 1U , then:

E[g(X)] = E[1{X∈U}] = P(X ∈ U).

This quantity depends only on the distribution of X. It's still true when g is a sum of indicator
functions, due to linearity of expectation. We use an approximation argument by simple functions
for arbitrary functions g.

We will specify this theorem in the case where X is a discrete or continuous random variable.
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Théorème 3.8. Let X be a discrete random variable, and let (xn)n∈N be the values it can

take. Then, X has �nite expectation if and only if:

∞∑
n=0

|xn|P(X = xn) < +∞

In this case:

E[X] =

∞∑
n=0

xnP(X = xn)

Moreover, if g is a function from R to R (provided the sum converges absolutely):

E[g(X)] =

∞∑
n=0

g(xn)P(X = xn)

Proof. You only need to adapt the beginning of the proof of Theorem 3.7 to the case where the
random variable X is not necessarily positive.

Théorème 3.9. Let X be a real random variable with density fX . Then, X has �nite

expectation if and only if: ∫
R
|x|fX(x)dx < +∞

In this case:

E[X] =

∫
R
xfX(x)dx

Furthermore, if g is a function from R to R (provided the integral converges absolutely):

E[g(X)] =

∫
R
g(x)f(x)dx.

Proof. If g = 1[a,b]:

E[g(X)] = P(a ≤ X ≤ b) =

∫ b

a
fX(x)dx =

∫
R
g(x)f(x)dx

By linearity, the formula is still true if g is a sum of indicator functions. Using an approximation
result, we deduce the general case.

An important theorem for bounding certain probabilities is the following.

Théorème 3.10 (Markov's Inequality). Let X be a positive random variable with �nite

expectation, and α a strictly positive real number. Then

P(X ≥ α) ≤ E[X]

α
.

More generally, if g is a positive and strictly increasing function, then

P(X ≥ α) ≤ E[g(X)]

g(α)
.
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Proof. Let A = {X ≥ α}. We observe that, for all ω ∈ Ω, α1A(ω) ≤ X(ω). Taking the
expectation, we obtain:

αE[1A] ≤ E[X]

P(A) ≤ E[X]

α

P(X ≥ α) ≤ E[X]

α

For the second inequality, we observe that A = {X ≥ α} = {g(X) ≥ g(α)}. We can apply
the inequality to the random variable g(X) and the real number g(α).

3.3.2 Median

An INSEE survey revealed that the average salary of a French person is 2,263 euros net per
month. However, half of the population earns a monthly net salary less than 1,683 euros. How
can we explain such a di�erence (580 euros)?

The average of a sample is sensitive to extreme values in the sample. That's why it's not
always suitable for studying a statistic.

In our case, a small portion of people with very high income in�ates the average salaries.
Let's imagine a village with 1,000 inhabitants, where the average salary is 2,000 euros per month.
If Bill Gates (monthly salary: 500,000 euros) decided to move to this village, the average salary
would increase by 500 euros, a 25% increase. That's why it's more reasonable here to use an
estimator that is robust against extreme values.

Dé�nition 3.8. The median of a random variable is a number m such that:

P (X ≤ m) ≥ 1/2 and P (X ≥ m) ≥ 1/2

It can be easily shown that there is always at least one median, but it may not be unique.
For example, if X follows a Bernoulli distribution, any number between 0 and 1 is a median.

In the previous example, the median salary is 1,683 euros net per month. The advantage of
a median is that it is insensitive to extreme values. If salaries were capped at 3,000 euros net per
month, the median salary would remain unchanged. A signi�cant di�erence between the average
salary and the median salary shows that the majority of the population lives poorly, while a
small portion of the population accumulates wealth.

In the case of nuclear decay, the median is also called half-life. The probability that an atom
decays before its half-life is exactly 1/2.

3.3.3 Variance

Variance is a measure of the spread of a random variable.

The spread quanti�es how much a random variable (or a sample) deviates from its average
value. A random variable with zero spread is constant. In �nance, spread, or volatility, is re-
lated to risk. A high variance indicates that a stock's value tends to �uctuate a lot, while a low
variance indicates relative stability.

For another example, consider looking at the scores of an exam you just graded. If the variance
is low, it means your students are all or mostly answering the easy questions and struggling with
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the di�cult ones. It's harder to rank the students in this case. Conversely, a high variance
suggests that the exam was well-balanced, making it easier to rank the candidates. This is often
desired in competitive exams.

Dé�nition 3.9. Let X be a random variable with �nite expectation. We denote Var(X) as
the variance of X, de�ned as:

Var(X) = E[(X − E[X])2]

If this quantity is �nite, we say X has �nite variance. In that case, we denote by

σ(X) =
√

Var(X)

its standard deviation.

Variance measures the deviation from the mean. It's one of the most common ways to
measure the spread of a random variable.

Théorème 3.11. Let X be a random variable with �nite variance, and λ a real number.

We have:

• Var(λX) = λ2Var(X)

• Var(X + λ) = Var(X)

• X is a.s. constant if and only if Var(X) = 0

• Var(X) = E[X2]− E[X]2

Proof. For the �rst point:

Var(λX) = E[(λX − E[λX])2] = E[(λ(X − E[X]))2] = λ2Var(X)

For the second point:

Var(X + λ) = E[(X + λ− E[X]− E[λ])2] = E[(X − E[X])2] = Var(X)

For the third point, if X is constant, then X is equal to c. So:

Var(X) = E[(c− E[c])2] = E[(c− c)2] = E[0] = 0.

The converse follows from the fact that a positive random variable with zero mean is equal to
zero almost surely. Hence X = E[X] and is thus constant a.s.. For the last point, we expand the
expression of the variance:

Var(X) = E[(X − E[X])2] = E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2

The following formulas for variance are also important in discrete and continuous cases.

Théorème 3.12. If X is a discrete random variable with values in {x1, x2, . . .} and �nite

variance, then:

Var(X) =

(
+∞∑
n=1

x2nP (X = xn)

)
−

(
+∞∑
n=1

xnP (X = xn)

)2
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Théorème 3.13. If X is a random variable with density fX and �nite variance, then:

Var(X) =

(∫
R
t2fX(t) dt

)
−
(∫

R
tfX(t) dt

)2

We also have the following theorem, which is important for the rest of the course.

Théorème 3.14 (Chebyshev's Inequality). Let X be a random variable with �nite variance

and β a nonzero real number. By using Markov's inequality, we can show that:

P(|X − E[X]| ≥ β) ≤ Var(X)

β2

3.4 Common probability distributions

Let's review some common probability distributions frequently encountered in probability theory.

3.4.1 Discrete distributions

• Bernoulli distribution B(p): This distribution is associated with an experiment having two
possible outcomes: 0 or 1. A random variable X follows a Bernoulli distribution with parameter
p if:

P(X = 0) = 1− p and P(X = 1) = p

If A is an event, the indicator random variable 1A follows a Bernoulli distribution with
parameter P(A).

E[X] = p Var(X) = p(1− p)

• Binomial distribution B(n, p): This distribution is associated with the repetition of n inde-
pendent and identically distributed random variables following a Bernoulli distribution with
parameter p. A random variable X follows a binomial distribution with parameters n and p if:

For k ∈ {0, . . . , n}, P(X = k) =

(
n
k

)
pk(1− p)n−k

If you toss a biased coin n times (with a probability of landing on heads being p), the random
variable X counting the number of heads follows a binomial distribution with parameters n and
p.

E[X] = np Var(X) = np(1− p)

• Uniform distribution U(a, b): This is the uniform distribution over the integers a, a+ 1, . . . , b.
We denote n = b− a+ 1. A random variable X follows a uniform distribution with parameters
a and b if:

For k ∈ {0, . . . , n}, P(X = k) =
1

n

We have:

E[X] =
a+ b

2
Var(X) =

n2 − 1

12
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• Geometric distribution G(p): This distribution is associated with the distribution of the �rst
occurrence of a repeated experiment. A random variable X follows a geometric distribution with
parameter p if:

∀k ∈ N∗, P(X = k) = (1− p)k−1pk

We have:

E[X] =
1

p
Var(X) =

1− p

p2

If you toss a biased coin (with a probability of landing on heads being p), the random variable
X giving the �rst occurrence of heads follows a geometric distribution with parameter p.

• Poisson distribution P(λ): This distribution is associated with the number of people in a
queue. A random variable X follows a Poisson distribution with parameter λ if:

∀k ∈ N, P(X = k) =
λke−λ

k!

In a queue, we assume that the time between the arrival of two customers follows a memoryless
(exponential) distribution with parameter λ. In this case, the number of people in the queue at
time 1 follows a Poisson distribution with parameter λ (at time t, the parameter is λt).

E[X] = λ Var(X) = λ

3.4.2 Continuous distributions

• Uniform distribution U([a, b]): This is the uniform distribution over a bounded interval [a, b].
X follows a uniform distribution over [a, b] if:

∀c, d such that a ≤ c ≤ d ≤ b, P(c < X < d) =
d− c

b− a
.

The density is given by

fX(x) =
1

b− a
1[a,b].

You can consider random variables that are uniform over any set with �nite measure (bounded
interval, circle, sphere, torus, etc).

E[X] =
b+ a

2
Var(X) =

(b− a)2

12

• Exponential distribution E(λ): This is the only family of memoryless distributions. Its density
is given by:

fX(t) = λe−λt.

We have:

E[X] =
1

λ
Var(X) =

1

λ2

• Normal distribution N (m,σ2): This distribution naturally appears in the central limit theo-
rem. It often models random �uctuations of a parameter around its average value (temperature,
white noise, stock prices, etc). Its density is given by:

fX(t) =
1√
2πσ2

e−
(t−m)2

2σ2 .
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3.5 Pair of random variables

We are often required to consider multiple random variables simultaneously. For instance, we
can calculate their sum, examine if they are correlated, etc. We provide the de�nition of a pair
of random variables, but this de�nition can be extended to a countable set of random variables.
Let X be a random variable:

X : (Ω,F ,P) −→ (E,G)

and let Y be another random variable de�ned on the same sample space:

Y : (Ω,F ,P) −→ (F,H)

Then it is possible to de�ne the product random variable:

(X,Y ) : (Ω,F ,P) −→ (E × F,G ⊗H)

Dé�nition 3.5. Let (E,G) and (F,H) be two measurable spaces. The product space:

E × F = {(x, y) |x ∈ E, y ∈ F}

can naturally be equipped with a sigma-algebra, called the product sigma-algebra and de-
noted by G ⊗H. It is generated by the sets:

G ⊗H = σ{(A×B) |A ∈ G, B ∈ H}

The law of a pair (X,Y ) of random variables de�ned as above is the speci�cation of proba-
bilities:

P(X ∈ A, Y ∈ B) = P({X ∈ A} ∩ {Y ∈ B})

for all A ∈ G and B ∈ H.

When we know the law of the pair (X,Y ), it is possible to determine the laws of X and Y .
This is referred to as the marginal laws of the pair (X,Y ).

Théorème 3.3 (Marginal Distribution). Let X be a random variable:

X : (Ω,F ,P) −→ (E,G)

and let Y be another random variable de�ned on the same sample space:

Y : (Ω,F ,P) −→ (F,H)

If we know the law of the pair (X,Y ), we can derive the law of X using the formula:

∀A ∈ G, P(X ∈ A) = P(X ∈ A, Y ∈ F )

Proof. Trivial.

The lemma of monotonous classes remains true. Let's detail the two cases of interest.
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Théorème 3.15 (Discrete Case). Let X and Y be two discrete random variables de�ned on

the same probability space. The law of the pair (X,Y ) is given by the probabilities:

P(X = xk, Y = yj)

where xk (respectively, yj) ranges over the values taken by X (respectively, Y ).

The marginal laws of X and Y are then given by:

P(X = xk) =
∑
j

P(X = xk, Y = yj) and P(Y = yj) =
∑
k

P(X = xk, Y = yj).

Théorème 3.16 (Continuous Case). Let X and Y be two real random variables de�ned on

the same probability space. The law of the pair (X,Y ) is given by the probabilities:

P(X ≤ x, Y ≤ y)

where x and y range over the real numbers.

We can specify the particular case where the pair (X,Y ) has a joint density.

Théorème 3.17. Let X and Y be two real random variables de�ned on the same probability

space. We say that the pair (X,Y ) has a joint density f(X,Y ) if, for all intervals I and J in

R, we have:

P(X ∈ I, Y ∈ J) =

∫
I×J

f(X,Y )(x, y) dx dy

In this case, the random variables X and Y have marginal densities given by:

fX(x) 7→
∫
R
f(X,Y )(x, y) dy and fY (y) 7→

∫
R
f(X,Y )(x, y) dx.

3.6 Independent random variables

Let X be a random variable:
X : (Ω,F ,P) −→ (E,G)

and let Y be another random variable de�ned on the same sample space:

Y : (Ω,F ,P) −→ (F,H)

We de�ne the independence of two random variables, X and Y .

Dé�nition 3.6. Two random variables X and Y de�ned as above are independent if:

∀A ∈ G, ∀B ∈ H, P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

In other words, the events {X ∈ A} and {Y ∈ B} are independent.

Let's specify the discrete and real cases.
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Dé�nition 3.10 (Discrete Case). Let X and Y be two discrete random variables de�ned
on the same probability space. The random variables X and Y are independent if and only
if:

P(X = xk, Y = yj) = P(X = xk)P(Y = yj)

where xk (respectively, yj) ranges over the values taken by X (respectively, Y ).

Dé�nition 3.11 (Continuous Case). Let X and Y be two real random variables de�ned on
the same probability space. The random variables X and Y are independent if and only if:

∀x, y ∈ R, P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y).

If X and Y are two random variables with densities fX(x) and fY (y), they are independent
if and only if the pair (X,Y ) has a joint density given by:

f(X,Y )(x, y) 7→ fX(x)fY (y).

Thus, if two random variables X and Y are independent, then we know the law of the pair
(X,Y ): it is simply the law given as the "product law" of X and Y . Independence can be
understood in terms of "information." If X is a random variable with values in (E,G), we can
de�ne the sigma-algebra σ(X):

σ(X) = {{X ∈ A} |A ∈ G}

This is the set of events generated by the random variable X. In this case, the random vari-
ables X and Y are independent if and only if the sigma-algebras σ(X) and σ(Y ) are independent.

In general, it is possible to talk about a family (Xn)n∈N of mutually independent random
variables. They are independent if and only if the sigma-algebras (σ(Xn))n∈N are mutually
independent. For example, if X,Y , and Z are the results of rolling three dice, then X + Y is
independent of Z.

Théorème 3.18. Let X and Y be two independent random variables with �nite expectations.

Then:

E[XY ] = E[X]E[Y ]

And more generally, for any measurable functions f and g from R to R:

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

If X and Y have �nite variances:

Var(X + Y ) = Var(X) + Var(Y )

Proof. For the �rst point, we can easily prove it for indicator functions: if f = 1A and g = 1B

with A and B as intervals, then:

E[f(X)g(Y )] = E[1{X∈A}1{Y ∈B}]

= P(X ∈ A, Y ∈ B)

= P(X ∈ A)P(Y ∈ B)

= E[f(X)]E[g(Y )]
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By linearity and passing to the limit, we can derive the general result. For the second point:

Var(X + Y ) = E[(X − E[X]) + (Y − E[Y ])]2 = Var(X) + Var(Y ) + 2E[(X − E[X])(Y − E[Y ])]

We denote:
Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

the covariance of X and Y . In the case where X and Y are independent, the covariance of the two
terms is zero, according to the �rst part of the theorem, and we can deduce the proposition.

Théorème 3.19. Let X1, . . . , Xn be mutually independent random variables. Then:

E[X1 . . . Xn] = E[X1] . . .E[Xn]

And:

Var(X1 + . . .+Xn) = Var(X1) + . . .+Var(Xn)

Proof. Similar to the proof of the previous theorem.

An important application of independence is the sum of independent real random variables.

Théorème 3.20. Let X and Y be two independent random variables with values in N, and
Z = X + Y . Then:

P(Z = n) =
n∑

k=0

P(X = k)P(Y = n− k)

Let X and Y be two real independent random variables with densities. Then, Z = X+Y
has a density given by:

fZ(z) =

∫
R
fX(u)fY (z − u) du

Proof. In the discrete case, it's the formula of total probabilities. In the case with densities, we
have:

P(X + Y ≤ z) = P((X,Y ) ∈ Az)

with Az as the set:
Az = {(x, y) ∈ R2 |x+ y ≤ z}

Thus:

P(X + Y ≤ z) =

∫
x+y≤z

fX(x)fY (y) dx dy

=

∫ z

−∞

∫
R
fX(u)fY (v − u) du dv

We performed the change of variables (u, v) = (x, x+y). The density is obtained by di�erentiating
with respect to the variable z.

4 Limit theorems in probability

4.1 Modes of convergence of random variables

Let (Xn)n≥0 be a sequence of random variables and X a random variable, all de�ned on the
same probability space (Ω,F ,P). We aim to give meaning to the convergence of the sequence
(Xn)n≥0 to X. To achieve this, we distinguish between 4 modes of convergence.
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Dé�nition 4.1 (Almost Sure Convergence). We say that the sequence of random variables
(Xn)n≥0 converges almost surely to X if, for almost every ω ∈ Ω,

lim
n→+∞

Xn(ω) = X(ω).

We write
Xn

a.s−→
n→+∞

X.

This is the pointwise convergence of random variables. It appears in the law of large numbers.
Intuitively, if we simulate the sequence Xn(ω)−X(ω) for a �xed ω, then this sequence converges
to 0. It is also found in the strong law of large numbers, and its main application is in the Monte
Carlo method. A simple case of almost sure convergence occurs when dealing with an increasing
and bounded sequence of random variables. In that case, it converges almost surely to a limiting
random variable.

Dé�nition 4.2 (Convergence in Lp). We say that (Xn)n≥0 converges in Lp if

lim
n→+∞

E[|Xn −X|p] = 0.

We write
Xn

Lp

−→
n→+∞

X.

When p = 2, it is called quadratic convergence. This mode of convergence is useful for certain
theoretical applications, particularly for proving the convergence of the mean, variance, etc.

Dé�nition 4.3 (Convergence in Probability). We say that the sequence of random variables
(Xn)n≥0 converges in probability to X if, for every ε > 0,

lim
n→+∞

P(|Xn −X| > ε) = 0.

We write
Xn

P−→
n→+∞

X.

Intuitively, a sequence of random variables converges in probability to its limit when the prob-
ability that the sequence takes values far from its limit tends to 0. For example, if (Xn)n≥0 is
a sequence of random variables following a Bernoulli distribution with parameter 1/n, then it
converges in probability to the constant random variable equal to 0, because

∀ε > 0, P(|Xn − 0| > ε) ≤ P(Xn = 1) =
1

n
−→

n→+∞
0.

Dé�nition 4.4 (Convergence in Distribution). We say that the sequence of random vari-
ables (Xn)n≥0 (with distribution functions (Fn)n≥0) converges in distribution to X (with
distribution function F ) if, at every continuity point x of the function F , we have

lim
n→+∞

Fn(x) = F (x).

We write
Xn

L−→
n→+∞

X.
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Convergence in distribution is unique among the 4 modes of convergence. It depends only on
the distribution of the sequence and not on the probability space on which it is de�ned. For
example, if X is a symmetric distribution, the distribution of the sequence

(X,−X,X,−X, . . .)

is constant and therefore converges in distribution to X, but generally does not converge for
other modes of convergence. When simulating an instance of the sequence, one typically does not
observe particular convergence. However, it becomes apparent when repeating the experiment a
large number of times and, for example, creating a histogram. It is a weak mode of convergence
but is easy to prove because it depends only on the sequence of distributions of the sequence
(Xn)n≥0, not on their interdependence. Instead of X, one can directly put a distribution. For
example, we can write

Xn
L−→

n→+∞
N (0, 1).

The following implications hold for convergences:

Almost Sure Convergence ⇒ Convergence in Probability ⇒ Convergence in Distribution

Convergence in Lp ⇒ Convergence in Probability ⇒ Convergence in Distribution

The converses are generally false, except for some special cases.

4.2 Law of large numbers

The law of large numbers establishes the connection between the empirical mean and the theo-
retical mean. For example, in a dice roll, I have a one in six chance of rolling a 5. The law of
large numbers asserts that, on average, after a large number of experiments, I would have rolled
a 5 approximately one in six times.

The law of large numbers allows validating (or invalidating) a probabilistic model. For in-
stance, to check whether a coin is biased or not, one can simply toss it a large number of times.
If the average number of heads is signi�cantly di�erent from 0.5, it can be concluded that the
coin is biased.

In the following, (Xn)n≥1 is a sequence of real random variables, independent and identically
distributed, meaning they all have the same distribution. Let X be a random variable following
this distribution. Sometimes, it is abbreviated by saying that (Xn)n≥1 is an i.i.d sequence with
the same distribution as X. We de�ne the sequence of empirical means (Xn)n≥1 as

∀n ≥ 0, Xn =
X1 + . . .+Xn

n
.

Théorème 4.1 (Law of Large Numbers). If the expectation of X is �nite, then

Xn
a.s−→

n→+∞
E[X].

Proof. Admitted.

For example, suppose I toss a biased coin in�nitely many times, where the probability of getting
"Heads" is p. We can de�ne An as the event "The coin lands on "Heads" on the n-th toss," and

Xn = 1An .
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The random variable Xn is equal to 1 if the coin lands on heads and 0 otherwise. Here, the
sequence (Xn)n≥1 is indeed an i.i.d sequence following a Bernoulli distribution with parameter
p. In this case,

Xn =
X1 + . . .+Xn

n
=

number of "Heads" in the �rst n tosses

n
.

It corresponds to the proportion of "Heads" in the �rst n tosses. The law of large numbers then
asserts that this proportion converges to the expectation of Xn, which is the probability of the
event "The coin lands on "Heads"":

Xn
a.s−→

n→+∞
p.

An application of the law of large numbers is the Monte Carlo method for estimating the value
of an integral. This method is particularly useful in dimensions d ≥ 1.

Théorème 4.2 (Monte Carlo). Let f : [0, 1]d → R be an integrable function, and (Un)n≥1

be an i.i.d sequence of uniform random variables on [0, 1]d. Then

f(U1) + . . .+ f(Un)

n
−→

n→+∞

∫
[0,1]d

f(x)dx.

Proof. We de�ne Xn = f(Un). The sequence (Xn)n≥1 is a sequence of real random variables
i.i.d with expectation

E[f(U)] =

∫
[0,1]d

f(x)dx,

according to the transfer theorem. The conclusion follows from the law of large numbers applied
to the sequence (Xn)n≥1.

4.3 Central limit theorem

The Central Limit Theorem (CLT) allows us to specify the �uctuations of the empirical mean
around the theoretical mean. It helps construct con�dence intervals when estimating a certain
parameter. For example, if I toss a coin 10000 times and get heads 4500 times, can I conclude
that the coin is fair? This is the purpose of the CLT. As before, we de�ne (Xn)n≥1 as a sequence
of i.i.d random variables with the same distribution as X, and

∀n ≥ 0, Xn =
X1 + . . .+Xn

n
.

As a reminder, a real random variable Z follows a normal distribution N (m,σ2) if it has a density
given by

fZ(t) =
1√
2πσ2

e−
(x−m)2

2σ2 .

Théorème 4.3. Assuming that the variance of X is �nite, then

Xn − E[Xn]√
Var(Xn)

L−→
n→+∞

N (0, 1).

Proof. Admitted.
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Observation of the CLT is made using a histogram. If we denote σ2 = Var(X), then

E[Xn] = E[X] and Var(Xn) =
σ2

n
.

If Z follows a standard normal distribution (i.e., N (0, 1)), then

σZ +m ∼ N (m,σ2).

In this case, the CLT can be written in di�erent ways.

Equivalently, the CLT can be expressed as

√
n
(
Xn − E[X]

) L−→
n→+∞

N (0, σ2).

(X1 + . . .+Xn)− nE[X]√
nσ

L−→
n→+∞

N (0, 1).

Or informally,

Xn ≃ N
(
E[X],

σ2

n

)
.

The CLT asserts that the error between the theoretical and empirical mean is of the order of√
Var(Xn) = σ/

√
n. This allows the calculation of asymptotic con�dence intervals. Let's see an

example to estimate the mean of a random variable using the observation of a sample of size n,
in the case where the variance σ is known.

Théorème 4.4 (Asymptotic Con�dence Interval at level α). Let Z be a standard normal

random variable, and 0 < α < 1. We de�ne the number qα/2 such that

P(−qα/2 ≤ Z ≤ qα/2) = 1− α.

Then

lim
n→+∞

P
(
Xn − σ√

n
qα/2 ≤ E[X] ≤ Xn +

σ√
n
qα/2

)
= 1− α.

Proof. According to the CLT, we have

lim
n→+∞

P
(
−qα/2 ≤

√
n
Xn − E[X]

σ
≤ qα/2

)
= 1− α.

The conclusion follows.

We have P(−2 ≤ Z ≤ 2) ≃ 0.95, and when the sequence (Xn)n≥0 is an i.i.d sequence of Bernoulli
random variables, we have the equality

σ ≤ 1/2.

In this case, the commonly used con�dence interval is:

lim
n→+∞

P
(
Xn − 1√

n
≤ E[X] ≤ Xn +

1√
n

)
≳ 0.95.

This is the "classic" con�dence interval, which is sometimes summarized by the saying "The
error made in estimating the proportion of a population is of order of the inverse square root of
the sample size."
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